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The imine podands tris[(2-nitrobenzylidene)aminoethyl]-

amine and tris[(2-nitrobenzylidene)aminopropyl]amine both

stabilize copper(I), forming {tris[(2-nitrobenzylidene)amino-

ethyl]amine-�4N}copper(I) perchlorate acetonitrile disolvate,

[Cu(C27H27N7O6)]ClO4�2CH3CN, (II), and {tris[(2-nitro-

benzylidene)aminopropyl]amine-�4N}copper(I) perchlorate,

[Cu(C30H33N7O6)]ClO4, (VI), respectively. The larger

propyl-based ligand is a poorer ®t for the CuI ion. The

reduced amine podand tris[(2-nitrobenzyl)aminoethyl]amine

binds CuII and the resulting compound, chloro{tris[(2-nitro-

benzyl)aminoethyl]amine-�4N}copper(II) chloride ethanol

solvate, [Cu(C27H33N7O6)Cl]Cl�C2H5OH, (IV), shows both

intra- and intermolecular hydrogen bonding, which gives rise

to RRS or SSR conformations in the podand strands rather

than the expected pseudo-threefold symmetry.

Comment

We have had a long-standing interest in the chemistry of both

imine and amine cryptates derived from tris(aminoethyl)-

amine (tren) and tris(3-aminoisopropyl)amine (trpn) [see, for

example, McKee et al. (2003) and Nelson et al. (1998)]. We

have investigated some simple podate complexes derived from

the same amines in order to clarify the geometric require-

ments associated with each (Coyle, 1999). A search of the

Cambridge Structural Database (Version 5.27; Allen, 2002;

Fletcher et al., 1996) showed that, although many tris(amino-

ethyl)amine/salicylate complexes have been investigated,

surprisingly few simple podates with other substituted benz-

aldehyde derivatives have been structurally characterized to

date. In this paper, we compare the structures of two CuI

podates, one derived from tris(aminoethyl)amine (tren) and

one from tris(aminopropyl)amine (trpn), with the CuII amine

analogue of the smaller tren-based podate.

In podate and cryptate complexes with potential threefold

symmetry, imine donors typically stabilize CuI and are easily

hydrolysed by CuII (Harding et al., 1995; Arthurs et al., 2001).

Reduction of the imine donors to the corresponding amines

generates a site in which CuI is activated to reaction with

dioxygen, as shown elegantly by Suzuki, Schindler and their

co-workers (Komiyama et al., 2004; Schatz et al., 2001).

However, CuII binds readily to the reduced ligands.

The structure of the imine podand tris[(2-nitrobenzyl-

idene)aminoethyl]amine, (I), was reported recently (McKee et

al., 2006). Reaction of (I) with Cu(CH3CN)4ClO4 in acetoni-

trile gave the CuI complex [Cu(I)]ClO4�2CH3CN, (II), as dark-

brown crystals (Fig. 1). The CuI ion is coordinated to all four N

atoms in an approximately trigonal±pyramidal geometry

(Table 1), although the bonds to the imine N atoms [average

2.003 (2) AÊ ] are signi®cantly shorter than that to the bridge-

head amine [Cu1ÐN1 = 2.196 (1) AÊ ], and the CuI ion is

0.172 (1) AÊ out of the mean plane of the imine N atoms in the

opposite direction to the bridgehead. The nitro groups are not

involved in the coordination of the metal and the three strands

are arranged fairly tightly about the approximate threefold

axis. There are two important factors controlling this

geometry, namely the essentially planar geometry at the imine

N atoms [angle sums 359.9 (2), 359.9 (2) and 359.8 (2)� for

atoms N11, N21 and N31, respectively] and the steric demands

imposed by coordination of all four N donors of the ligand.

These result in the CÐN C plane being tilted with respect to

the `default' orientation (parallel to the pseudo-threefold axis
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and perpendicular to the plane of the three sp2-hybridized

imine donors); the interplanar angles are 71.6 (1), 73.5 (1) and

74.1 (1)� for the N11, N21 and N31 strands, respectively. In

other words, the orientation of the conjugated nitrobenzyl-

idene strands is determined by the orientation of the imine

lone pairs. It is therefore not surprising that this geometry is

common for tren-based imine podands in the absence of

additional intra- or intermolecular interactions. There are no

signi®cant interactions between the cation and perchlorate

anion or solvent molecules. The anion is disordered and was

modelled with approximately 10% occupancy of the minor

orientation (Fig. 1).

The amine podand, tris[(2-nitrobenzyl)aminoethyl]amine,

(III), was obtained by reduction of (I) with NaBH4, which

reduced the imine groups but not the nitro substituents.

Reaction of ligand (III) with CuCl2 in ethanol yielded the

amine complex [Cu(III)Cl]Cl�C2H5OH, (IV), as green crystals.

The formula unit of (IV) is shown in Fig. 2. The geometry at

the CuI ion is approximately trigonal±bipyramidal (Table 2),

with the bridghead tertiary amine and the coordinated Clÿ ion

as apical donors. The coordination geometry is similar to that

observed for the analogous CuII podate derived from

benzaldehyde [tris(benzylaminoethyl)amine; Komiyama et al.,

2004; Schatz et al., 2001).

Two of the nitro groups of (IV) are hydrogen bonded to the

adjacent secondary amines (Table 3), but the third strand is

different, with the amine (N31) hydrogen bonded to the

ethanol solvent molecule. Consequently, the con®guration at

N31 is opposite to that at N11 and N21 (SRR in Fig. 2,

although, since the structure is centrosymmetric, the RSS

con®guration is also present). This difference breaks the

pseudo-threefold symmetry of the cation. The non-coordi-

nated Clÿ ion Cl2 makes a relatively short hydrogen bond to

the ethanol solvent molecule [3.105 (4) AÊ ] and shows further

interactions with N21 and with N11 of an adjacent molecule.

The latter two interactions are long for hydrogen bonds to

Clÿ, at 3.302 (4) and 3.474 (4) AÊ , respectively (Steiner, 2002).

However, both are bifurcated and involve coordinated amines.

The resulting hydrogen-bond pattern links the structure in

chains running parallel to the b axis (Fig. 3). The most notable
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Figure 2
The structure of complex (IV), showing the atom-numbering scheme.
Displacement ellipsoids are drawn at the 50% probability level and
hydrogen bonds are shown as dashed lines. H atoms not involved in
hydrogen bonding have been omitted for clarity.

Figure 3
A packing plot for complex (IV), viewed down the b axis. Hydrogen
bonds are shown as dashed lines and the �±� interactions are indicated by
open bonds linking ring centroids. Key: Cl atoms are shown cross-
hatched, Cu atoms are shaded top left to bottom right, N atoms are
dotted, and O atoms are shaded bottom left to upper right.

Figure 1
The structure of complex (II), showing the atom-numbering scheme.
Displacement ellipsoids are drawn at the 50% probability level and H
atoms have been omitted for clarity. The minor component of the
disordered ClO4

ÿ ion is indicated by open bonds.



interaction between these chains is a �±� interaction between

the C24±C29 ring and its symmetry equivalent by inversion

under (1 ÿ x, ÿy, 1 ÿ z); the rings are necessarily parallel, the

interplanar distance is 3.393 (4) AÊ and centroid-to-centroid

distance is 3.710 (4) AÊ .

Complex (VI), namely {tris[(2-nitrobenzylidene)amino-

propyl]amine}copper(I) perchlorate, is analogous to complex

(II), except that the longer tripodal amine tris(amino-

propyl)amine (trpn) is used in place of tren. As for (II), the Cu

ion is stabliized in the +1 state and has trigonal±pyramidal

geometry (Fig. 4 and Table 4). However, the CuI ion is

displaced from the imine plane by 0.167 (1) AÊ towards the

bridgehead [i.e. in the opposite sense from complex (II)]. As

observed for complex (II), the requirement to coordinate the

CuI ion to all four N-atom donors results in tilting of the CÐ

N C planes relative to the plane of the three sp2-hybridized

imine donors. In complex (VI), however, this effect is much

more pronounced [interplanar angles 34.9 (2), 36.3 (2) and

39.4 (2)� for atoms N11, N21 and N31, respectively].

The three-dimensional `podand bite' in the two CuI

complexes, (II) and (VI), can be compared by considering the

dimensions of the trigonal pyramid formed by the four N-atom

donors, with the tertiary amine (N1) at the apex and the imine

atoms N11, N21 and N31 in the basal plane. As mentioned

above, the CuI ion is outside the pyramid in complex (II) and

inside for (VI). However, the CuÐN1 distances are identical

[2.196 (2) AÊ ] and the CuÐN(imine) bonds are only marginally

different [mean values 2.003 (2) AÊ for (II) and 2.018 (2) AÊ for

(VI)]. The mean imine±imine distances in the basal plane are

similar [3.456 and 3.483 AÊ for (II) and (VI), respectively], but

the mean base±apex edges are signi®cantly different

[2.842 (2) AÊ for (II) and 3.103 (2) for (VI)]. An indication of

steric strain in complex (VI) is given by the NÐCÐC and CÐ

CÐC angles in the saturated chain between N1 and the imine

N atoms; the average angle is 114.4 (3)�, compared with

110.5 (2)� for complex (II).

We have observed similar patterns in the geometry of Cu

ions in cryptand hosts derived from tren and trpn [see, for

example, Farrar et al. (1995) and Nelson et al. (1998)],

supporting the suggestion that steric constraints mean that the

larger podand has more dif®culty accommodating bonding

between the CuI ion and all four donors than the smaller

analogue. These results also go some way to explaining the

initially counterintuitive ®nding that, in the dinuclear imino-

cryptate series, the shortest internuclear distances between

cationic guests are found for the larger hosts (Drew et al., 2000;

Farrar et al., 1995; Nelson et al., 1998). In the case of the

cryptand ligands, the twist imposed on each strand by the

coordination of the imine donors shortens the distance

between the two metal binding sites.

Experimental

For the preparation of [CuI(I)]ClO4�2CH3CN, (II), tris[(2-nitro-

benzylidene)aminoethyl]amine, (I) (0.93 g, 1.7 mmol), was dissolved

in dry deoxygenated acetonitrile (30 ml) and a solution of

Cu(CH3CN)4ClO4 (0.55 g, 1.7 mmol) in deoxygenated acetonitrile

(20 ml) was added slowly with stirring. The red±brown solution was

stirred for 30 min at 313 K and then cooled, during which time an

orange crystalline product precipitated. This was ®ltered off and

dried under nitrogen, losing the acetonitrile solvent in the process

(yield 0.70 g, 52%). Analytical results (available in the archived CIF)

are consistent with the stated composition for all compounds

reported here.

The amine podand tris[(2-nitrobenzyl)aminoethyl]amine, (III),

was prepared by reduction of the imine analogue (Liu et al., 1992).

The imine (I) (2.15 g, 3.9 mmol) was dissolved in methanol (60 ml).

Na2B4O7 (0.81 g, 4.0 mmol) was added, followed by NaBH4 (0.65 g,

17.2 mmol) in small portions over a period of 30 min. The solution

was stirred for 2 h and then the solvent was removed on a rotary

evaporator. NH4Cl (4 g, 76 mmol) in water (40 ml) was added and the

mixture was extracted with CHCl3 (3 � 60 ml). The CHCl3 solution

was washed with water, dried over MgSO4 and ®ltered. Finally, the

solvent was removed under reduced pressure to yield the amine as a

pale-yellow oil (yield ca 88%). The IR spectrum of the oil con®rmed

that the ligand had been successfully reduced. The imine stretch at ca

1630 cmÿ1 was no longer present, but symmetric and antisymmetric

stretches of the nitro group at 1347 and 1526 cmÿ1, respectively,

con®rmed that the substituent remained unchanged. The amine was

used in the next step without further puri®cation.

For the preparation of [CuII(III)Cl]Cl�C2H5OH, (IV), the amine

ligand (III) (0.05 g, 0.09 mmol) was dissolved in ethanol (1.5 ml),

forming a pale-orange solution. On addition of a solution containing

CuCl2 (0.013 g, 0.09 mmol) in ethanol (1 ml), a turquoise solution was

formed. Green crystals of (IV) were obtained on allowing the solu-

tion to stand (yield 0.03 g, 48%).

Ligand (V) was prepared by the dropwise addition of tris(3-

aminoisopropyl)amine (0.32 g, 1.7 mmol) in methanol (20 ml) with

stirring to nitrobenzaldehyde (0.77 g, 5.1 mmol) in methanol (20 ml).

The resulting solution was stirred at 313 K for 30 min and the volume

was then reduced to yield a yellow oil, viz. (V). The oil was dissolved

in deoxygenated acetonitrile (30 ml) and Cu(CH3CN)4�ClO4 (0.55 g,

1.7 mmol) was added. A brown solution formed and dark-red crystals

of [CuI(V)]ClO4, (VI), were obtained on allowing the solution to

stand (yield 0.69 g, 54%).
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Figure 4
The structure of complex (VI), showing the atom-numbering scheme.
Displacement ellipsoids are drawn at the 40% probability level and H
atoms have been omitted for clarity.



Compound (II)

Crystal data

[Cu(C27H27N7O6)]ClO4�2C2H3N
Mr = 790.65
Triclinic, P1
a = 11.1178 (7) AÊ

b = 13.3595 (9) AÊ

c = 13.7998 (9) AÊ

� = 111.627 (1)�

� = 102.995 (1)�


 = 103.648 (1)�

V = 1737.8 (2) AÊ 3

Z = 2
Dx = 1.511 Mg mÿ3

Mo K� radiation
� = 0.78 mmÿ1

T = 150 (2) K
Tablet, brown
0.37 � 0.19 � 0.08 mm

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer

' and ! scans
Absorption correction: multi-scan

(SADABS; Sheldrick, 2003)
Tmin = 0.762, Tmax = 0.941

15023 measured re¯ections
7856 independent re¯ections
6372 re¯ections with I > 2�(I)
Rint = 0.019
�max = 28.8�

Re®nement

Re®nement on F 2

R[F 2 > 2�(F 2)] = 0.033
wR(F 2) = 0.082
S = 1.02
7856 re¯ections
488 parameters
H-atom parameters constrained

w = 1/[�2(Fo
2) + (0.0325P)2

+ 1.0079P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max = 0.025
��max = 0.35 e AÊ ÿ3

��min = ÿ0.45 e AÊ ÿ3

Compound (IV)

Crystal data

[Cu(C27H33N7O6)Cl]Cl�C2H6O
Mr = 732.11
Monoclinic, P21=c
a = 13.183 (5) AÊ

b = 14.485 (6) AÊ

c = 16.914 (7) AÊ

� = 95.319 (7)�

V = 3216 (2) AÊ 3

Z = 4
Dx = 1.512 Mg mÿ3

Mo K� radiation
� = 0.90 mmÿ1

T = 150 (2) K
Plate, green
0.23 � 0.21 � 0.07 mm

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer

' and ! scans
Absorption correction: multi-scan

(SADABS; Sheldrick, 2003)
Tmin = 0.819, Tmax = 0.940

22643 measured re¯ections
5657 independent re¯ections
3256 re¯ections with I > 2�(I)
Rint = 0.103
�max = 25.0�

Re®nement

Re®nement on F 2

R[F 2 > 2�(F 2)] = 0.055
wR(F 2) = 0.153
S = 0.98
5657 re¯ections
416 parameters

H-atom parameters constrained
w = 1/[�2(Fo

2) + (0.0768P)2]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max < 0.001
��max = 0.63 e AÊ ÿ3

��min = ÿ0.76 e AÊ ÿ3

Compound (VI)

Crystal data

[Cu(C30H33N7O6)]ClO4

Mr = 750.62
Monoclinic, P21=c
a = 9.5361 (7) AÊ

b = 18.6870 (13) AÊ

c = 19.2367 (13) AÊ

� = 104.044 (1)�

V = 3325.5 (4) AÊ 3

Z = 4
Dx = 1.499 Mg mÿ3

Mo K� radiation
� = 0.80 mmÿ1

T = 150 (2) K
Lath, red
0.47 � 0.17 � 0.13 mm

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer

' and ! scans
Absorption correction: multi-scan

(SADABS; Sheldrick, 2003)
Tmin = 0.704, Tmax = 0.903

28475 measured re¯ections
7892 independent re¯ections
5773 re¯ections with I > 2�(I)
Rint = 0.028
�max = 28.8�

Re®nement

Re®nement on F 2

R[F 2 > 2�(F 2)] = 0.040
wR(F 2) = 0.112
S = 1.00
7892 re¯ections
455 parameters
H-atom parameters constrained

w = 1/[�2(Fo
2) + (0.0534P)2

+ 2.0893P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max = 0.001
��max = 0.50 e AÊ ÿ3

��min = ÿ0.33 e AÊ ÿ3

For all three compounds, H atoms were inserted in calculated

positions and re®ned using a riding model. The constrained distances

were 0.95, 0.99, 0.98, 0.93 and 0.84 AÊ for aryl, methylene, methyl,

amine and alcohol H atoms, respectively. They were re®ned with
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Table 1
Selected geometric parameters (AÊ , �) for (II).

Cu1ÐN31 1.9974 (15)
Cu1ÐN21 1.9981 (15)

Cu1ÐN11 2.0127 (16)
Cu1ÐN1 2.1965 (15)

N31ÐCu1ÐN21 120.56 (6)
N31ÐCu1ÐN11 118.99 (6)
N21ÐCu1ÐN11 118.25 (6)

N31ÐCu1ÐN1 85.48 (6)
N21ÐCu1ÐN1 84.85 (6)
N11ÐCu1ÐN1 84.86 (6)

Table 2
Selected geometric parameters (AÊ , �) for (IV).

Cu1ÐN1 2.038 (4)
Cu1ÐN31 2.081 (4)
Cu1ÐN11 2.105 (4)

Cu1ÐN21 2.107 (4)
Cu1ÐCl1 2.2547 (16)

N1ÐCu1ÐN31 84.44 (16)
N1ÐCu1ÐN11 83.97 (16)
N31ÐCu1ÐN11 127.92 (16)
N1ÐCu1ÐN21 84.35 (15)
N31ÐCu1ÐN21 121.43 (16)

N11ÐCu1ÐN21 107.62 (15)
N1ÐCu1ÐCl1 176.50 (12)
N31ÐCu1ÐCl1 92.13 (12)
N11ÐCu1ÐCl1 97.66 (11)
N21ÐCu1ÐCl1 98.07 (11)

Table 3
Hydrogen-bond geometry (AÊ , �) for (IV).

DÐH� � �A DÐH H� � �A D� � �A DÐH� � �A

N31ÐH31N� � �O41 0.93 2.13 2.998 (6) 154
N11ÐH11N� � �O12 0.93 2.29 2.882 (6) 121
N11ÐH11N� � �Cl2i 0.93 2.63 3.474 (4) 152
N21ÐH21N� � �O22 0.93 2.46 3.023 (6) 119
N21ÐH21N� � �Cl2 0.93 2.48 3.302 (4) 147
O41ÐH41� � �Cl2 0.84 2.28 3.105 (5) 170

Symmetry code: (i) ÿx� 1; yÿ 1
2;ÿz� 3

2.

Table 4
Selected geometric parameters (AÊ , �) for (VI).

Cu1ÐN21 2.0124 (19)
Cu1ÐN11 2.0093 (18)

Cu1ÐN31 2.0326 (17)
Cu1ÐN1 2.1965 (19)

N21ÐCu1ÐN11 121.49 (8)
N21ÐCu1ÐN31 119.13 (7)
N11ÐCu1ÐN31 117.34 (7)

N21ÐCu1ÐN1 94.59 (8)
N11ÐCu1ÐN1 94.67 (7)
N31ÐCu1ÐN1 95.00 (7)



Uiso(H) = 1.2Ueq(carrier atom). The value of Rint for complex (IV) is

high (0.103) due to poor crystal quality resulting in broad diffraction

peaks.

For all compounds, data collection: SMART (Bruker, 1998); cell

re®nement: SMART; data reduction: SAINT (Bruker, 1998);

program(s) used to solve structure: SHELXS97 (Sheldrick, 1997);

program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997);

molecular graphics: SHELXTL (Sheldrick, 2001); software used to

prepare material for publication: SHELXTL.
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